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1 Introduction
The basic techniques and important concepts of the one-dimensional electromag-

netic particle code: KEMPO1 [Omura and Matsumoto, 1993] are reviewed briefly
in this article. In the code, Maxwell’s equations and equations of motions for a large
number of superparticles are solved. Because of the limitation in the number of super-
particles, electrostatic thermal fluctuations are enhanced in the particle code, which
often interfere with physical processes to be reproduced in simulations. From a sim-
plified analysis of the fluctuations, a criterion for the ratio of the grid spacing to the
Debye length is given. A modification of the KEMPO1 for the solution of the rel-
ativistic equations of motion is also described. Since essential parts of the code are
very simple and short, it is easy to modify the code regarding the initialization and
the boundary conditions. To facilitate modification of the code and its verification by
graphic outputs, we have rewritten the KEMPO1 code using the MATLAB program-
ming software. MATLAB provides us with a convenient graphic user interface and
flexible graphic diagnostics. Explanation of the input parameters for the relativistic
KEMPO1/MATLAB code and several examples of applications are given for tutorial
purposes.

2 Basic Equations and Methods of Computation
Electromagnetic processes in space plasmas are governed by Maxwell’s equa-

tions:

∇ × B = µ0J + 1

c2

∂E
∂t

(1)

∇ × E = −∂B
∂t

(2)

∇ · E = ρ

εo
(3)

∇ · B = 0 (4)

where J, ρ, c, εo, and µ0 are the current density, charge density, light speed, electric
permittivity, and magnetic permeability, respectively. In simulations the values of the
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permittivity ε0 and permeability µ0 can be defined arbitrarily, as long as they satisfy
the relation

ε0µ0 = 1

c2
. (5)

In the KEMPO1, for simplicity, we adopt the following definition

ε0 = 1, µ0 = 1

c2
.

We solve Maxwell’s equations for the electric field E ≡ (Ex , Ey, Ez) and mag-
netic field B ≡ (By, Bz) in a one-dimensional system. It is noted that Bx is a constant
in the one-dimensional system because of (4). In a vacuum without any charged par-
ticles, we have J = 0. The set of Maxwell’s equations (1) and (2) are solved by
the standard FDTD (Finite Difference Time Domain) method, which has been used
widely in the various field of radio science.

We introduce two sets of spatial grid systems along the x-axis. One is a full-
integer grid system defined at i
x (i = 1, 2, 3, ..., N x) and the other is a half-integer
grid system at (i + 1/2)
x . We define Ey , By , Jy , and ρ on the full-integer grids,
and Ex , Ez , Bz , Jx on the half-integer grids. We replace spatial and time derivatives
in Maxwell’s equations with the following centered differences by 
x and the time
step 
t .

By,i+1 − By,i


x
= µo Jz,i+1/2 (6)

Bz,i+1/2 − Bz,i−1/2


x
= −µo Jy,i (7)

E(Xi , t) = Eoexp(k Xi − ωt) (8)

∂ E(Xi , t)

∂x
= E(Xi + 
x/2, t) − E(Xi − 
x/2, t)


x

= 1


x
[exp(k
x/2) − exp(−k
x/2)] E(Xi , t)

= i
sin(k
x/2)


x/2
E(Xi , t) = i K E(Xi , t) (9)

where

K = sin(k
x/2)


x/2
(10)

Because of the centered difference scheme, the dispersion relation of electromag-
netic waves in a vacuum ω2 = c2k2 is replaced by a modified dispersion relation

2 = c2 K 2 (11)
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where  is given by

 = sin(ω
t/2)


t/2
. (12)

This gives the Courant condition for the time step and the grid spacing,

c
t < 
x . (13)

If the Courant condition is violated, the electromagnetic field grows exponentially
because of the imaginary part of ω as a solution of (12).

In the presence of charged particles, we need to compute the charge density and
the current density to incorporate their effects on the electromagnetic field. The
charge density ρi on a grid point at x = Xi is calculated by

ρi = 1


x

Np∑
j

q j W (x j − Xi ) (14)

where Wx is a particle shape function given by

W (x) = 1 − |x |

x , |x | ≤ 
x

= 0, |x | > 
x (15)

The summation in (14) is taken for all Np particles in the simulation system.
The initial electric field Ex is calculated from (3) in the difference form

Ex,i+1/2 − Ex,i−1/2


x
= ρi

ε0
(16)

where ε0 is the electric permittivity.
The current density Jx is calculated based on the charge conservation method [Vil-

lasenor and Buneman, 1992; Umeda et al., 2003] satisfying the continuity equations
of the charge,

J t+
t/2
x,i+1/2 − J t+
t/2

x,i−1/2 = −
x


t
(ρ t+
t

i − ρ t
i ). (17)

The current densities Jy and Jz are calculated by

Jt+
t/2
i+1/2 = 1


x

Np∑
j

q j vW (x j − Xi+1/2). (18)

The values of Jy calculated at the half-integer grids are relocated to the full-
integer grids by the following procedure:

Jy,i = Jy,i−1/2 + Jy,i+1/2

2
. (19)
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Fig. 1. Dispersion relation of the thermal noise in an unmagnetized plasma.

With these components of the current density J, we can trace time evolution
of electromagnetic fields E and B by solving Maxwell’s equations with the FDTD
method.

In Fig. 1, we plotted frequency ω and wavenumber k spectra of an electromag-
netic component Ez obtained by a run of the KEMPO1 code. The electromagnetic
fluctuation is induced by the current densities due to the thermal motion of the plasma.
Using the technique of the fast Fourier transform (FFT), we have applied the discrete
Fourier transform to the electric field component Ez in space and time. The forward
and backward traveling waves are separated by positive and negative wavenumbers,
respectively. The separation technique is described in Matsumoto and Omura [1985].
As we find in the modified dispersion relation due to the centered difference scheme
described above, the high frequency part of the dispersion relation of electromagnetic
waves deviates from the oblique dashed lines representing the speed of light. The
holizontal dashed line indicates the electron plasma frequency.

Since the current density Jx exactly satisfies the continuity equations of the charge
density, Ex updated by the current density Jx automatically satisfy (16), if the differ-
ence equation is satisfied initially.

The equations of motion for a particle with a charge q and a mass m are the
following:

dv
dt

= q

m
(E + v × B), (20)
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dx

dt
= vx (21)

Equation (20) is solved by the Buneman-Boris method [Hockney and Eastwood,
1981; Birdsall and Langdon, 1985]. The advantage of the method is that it maintains
strict conservation of the kinetic energy in the calculation of cyclotron motion. Even
with a relatively large time step ωc
t , the kinetic energy is strictly conserved. The
angular cyclotron frequency c given by

c = tan−1ωc
t/2


t/2
(22)

is slightly decreased as the time step becomes large. In most of the applications the
decrease can be neglected because c/ωc = 0.9967 with ωc
t = 0.2. In advancing
the velocity v from t − 
t/2 to t + 
t/2, we need the electric field E and magnetic
field B at time t at particle position x(t). We interpolate the field linearly from the
values at the adjacent grid points. It is interesting that the linear interpolation can be
expressed by the following two equations with the same shape function W (x) used
for calculation of the charge and current densities. We use

F(x) =
Nx∑

i=1

Fi W (x − Xi ) (23)

for the fields defined {Fi } at the full-integer grids, while we use

H(x) =
Nx∑

i=1

Hi+1/2W (x − Xi+1/2) (24)

for the fields {Hi+1/2} defined at the half-integer grids, where Nx is the total number
of grid points in the system.

The electrostatic component Ex defined at the half-integer grids, however, has to
be relocated to the full-integer grids before the interpolation by the following proce-
dure:

Ex,i = Ex,i−1/2 + Ex,i+1/2

2
(25)

This is done in order to cancel the electrostatic self-force [Matsumoto and Omura,
1985]. Since the source of the electrostatic field is the charge density ρ defined at
the full-integer grids, the force interpolation must also be made from the full-integer
grids by (23). A particle should not be influenced by the field due to its own charge.
Similarly, the magnetic field By has to be relocated before the interpolation from the
full-integer grids to the half-integer grids by

By,i+1/2 = By,i + By,i+1

2
. (26)
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This is for cancellation of the magnetostatic self-force due to the current density Jz ,
i.e., Ampere’s law:

By,i+1 − By,i


x
= µo Jz,i+1/2 (27)

It is noted that both Jy and Jz are calculated at the half-integer grids. In summary,
Ex and Ey are interpolated from the full-integer grids, while Ez , By , and Bz are
interpolated from the half-integer grids.

3 Relativistic KEMPO1
For high energy particles with velocity close to the speed of light, we solve the

relativistic equation of motion,

d

dt
(mv) = q (E + v × B) (28)

where m = γ m0, m0 is the mass at rest, and γ is the Lorentz factor given by

γ = 1√
1 − (

v
c

)2
. (29)

We define u = γ v, or

u = c√
c2 − |v|2

v. (30)

Solving for v, we have

v = c√
c2 + |u|2

u. (31)

Equation (28) is rewritten as

du
dt

= q

m0

(
E + c√

c2 + |u|2
u × B

)
. (32)

Defining a modified magnetic field as

Bu = c√
c2 + |u|2

B, (33)

we obtain the equation,
du
dt

= q

m0
(E + u × Bu) (34)

which is the same form as (20). The difference form of this equation is

ut+
t/2 − ut−
t/2


t
= q

m0

(
Et + ut+
t/2 + ut−
t/2

2
× Bt

u

)
(35)
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We can apply the Buneman-Boris method specified as follows:
Step 1:

ut−
t/2 = c√
c2 − ∣∣vt−
t/2

∣∣2
vt−
t/2 (36)

Step 2:

ut
1 = ut−
t/2 + q

m0


t

2
Et (37)

Step 3:

Bt
u = c√

c2 + ∣∣ut
1

∣∣2
Bt (38)

Step 4:

ut ′ = ut
1 + q

m0


t

2
ut

1 × Bt
u (39)

Step 5:

ut
2 = ut

1 + 2

1 +
(

Bt
u

q
m0


t
2

)2 ut ′ × Bt
u

q

m0


t

2
(40)

Step 6:

ut+
t/2 = ut
2 + q

m0


t

2
Et (41)

Step 7:

vt+
t/2 = c√
c2 + ∣∣ut+
t/2

∣∣2
ut+
t/2 (42)

In (38), Bt
u is computed from ut

1 and Bt , because

∣∣∣ut+
t/2 + ut− 
t
2

∣∣∣ =
∣∣∣∣ut

1 + ut
2

2

∣∣∣∣ (43)

and |ut
1| = |ut

2|.
In the relativistic code, we initialize particle velocities so that the following dis-

tribution function is realized in the momentum space (ux , uy, uz)

f (u‖, u⊥) ∝ exp(− (u‖ − Vd‖)2

2V 2
t‖

− (u⊥ − Vd⊥)2

2V 2
t⊥

) (44)

With Vd⊥ = 0, the distribution function is reduced to the shifted bi-Maxwellian dis-
tribution, while a finite Vd⊥ (>> Vt⊥) realizes a ring distribution. Using a random
number generator for the standard normal distribution, we assign each particle a mo-
mentum u = (ux , uy, uz), which is converted to a velocity v = (vx , vy, vz) by (31),
namely,

v = u/γ = c√
c2 + u2

x + u2
y + u2

z

u (45)
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As one of the diagnostics, the kinetic energy of each particle is calculated by

TE = mc2 − m0c2

= (γ − 1)m0c2. (46)

The sum of the kinetic energy is taken for all particles in the simulation system.
We divide the sum by the length of the system to obtain the average kinetic energy
density. The sums of the electric and magnetic field energies are taken for all grid
points forming the simulation system. Dividing them by the number of grid points,
we obtain the average electric and magnetic field energy densities in the system.

4 Thermal Fluctuation
Each superparticle in the particle code has a much larger kinetic energy than a

real charged particle in a real space plasma. The number of particles in the Debye
length is much smaller than that in a real space plasma. This results in enhanced
thermal fluctuations of the electrostatic field. The electrostatic field energy density of
the thermal fluctuation FE is given by

FE = T

2

∫ ∞

−∞

1

1 + k2λ2
D

dk

2π

= T

4λD
(47)

where T (≡ mV 2
t ) is the temperature in the dimensions of energy. The thermal energy

density, on the other hand, is given by,

TE = 1

2
nT . (48)

We obtain the ratio of the electrostatic field energy density FE to the thermal energy
density TE as expressed in terms of the number of particles per cell and the ratio of
the Debye length to the grid spacing, thus:

FE

TE
= 1

2

1

nλD

= 1

2

Nx

Np


x

λD
(49)

In the presence of a fluctuation δφ of the electrostatic potential, we have the den-
sity fluctuation approximated by

n ∼ n0exp(−qδφ

T
). (50)

If we insert relation (50) into Poisson’s equation, we have
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∂2δφ

∂x2
∼ q2n

εoT
δφ = ω2

p

V 2
t

δφ = 1

λ2
D

δφ. (51)

Applying Fourier transformation, we obtain

(k2 − 1

λ2
D

)δφk ∼ 0 (52)

In order to have a finite δφk , we must set,

|k| ∼ 1

λD
. (53)

Because we choose the difference scheme in calculating the spatial derivatives, the
wavenumber k is replaced by K given by (10). Multiplying 
x/2, we obtain

|sin(k
x/2))| ∼ 
x

2λD
. (54)

In order to satisfy the above relation, the following condition must be satisfied:


x < 2λD (55)

A detailed study of thermal fluctuations has been conducted with the KEMPO1 code
[Ueda et al., 1994]. If the condition is violated, there arises a nonphysical numerical
heating with a large growth rate. The heating continues, and the effective Debye
length increases until the condition (55) is satisfied.

5 Input Parameters
The following is the list of parameters used in the KEMPO1/MATLAB code.

These parameters are specified through a graphic user interface as shown in Fig. 2.
A set of default parameters is automatically loaded from a file named “default.dat,”
which has been installed in the KEMPO1 work directory. Different sets of parameters
can be loaded from other parameter files in the directory by the “LOAD” button at
the bottom. The current parameters can be saved to a specified file by the “SAVE”
button.

• DX : Grid spacing.

• DT : Time step.

• CV : Speed of light

• WC : Cyclotron frequency of species 1, ωc1. From this cyclotron frequency,
we compute the magnitude of the static magnetic field Bo from the relation of
Bo = ωc1/(q/m)1.



10 Y. Omura

Fig. 2. Graphical User Interface for specifying a set of parameters of KEMPO1. The four buttons at
the bottom are for loading a set of parameters from a file, saving the current parameters, starting the
simulation, and terminating the program.

• AN GL E : Angle between the static magnetic field Bo and the wave Vector k.
The static magnetic field Bo is taken in the x-y plane.

• N X : Number of grid points Nx .

• N T I M E : Number of time steps in a simulation run.

• N S: Number of particle species.

• QM(i): Charge-to-mass ratio qi/mi of species i

• W P(i): Plasma frequency of species i defined by

ωpi =
√

ni q2
i

mi
(56)

where ni , qi , and mi are number density, charge and mass of species i , respec-
tively. We calculate the average number density by

ni = Np

Nx
x
(57)
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and determine the charge of a superparticle by

qi = ρi

ni
= ω2

pi

(qi/mi )ni
. (58)

In a system with ions as mobile particles, the following charge neutrality con-
dition must be satisfied:

∑
i

ρi =
∑

i

qi ni =
∑

i

ω2
pi

qi/mi
= 0 (59)

In a system with mobile electrons only, the charge density of the background
immobile ions is automatically computed to establish charge neutrality.

• V P E(i); Perpendicular thermal velocity of species i .

• V P A(i); Parallel thermal velocity of species i .

• V D(i): Drift velocity of species i . In combination with the pitch angle φ =
PC H(i), the drift velocities of parallel and perpendicular components are de-
termined.

Vd⊥ = Vd sin φ (60)

Vd‖ = Vd cos φ (61)

• PC H(i): Pitch angle φ (degrees) of species i defining parallel and perpendic-
ular drift velocities Vd‖ and Vd⊥.

• N P(i): Number of superparticles for species i in the simulation system.

• AJ AM P : The amplitude of an external current Jz,ext placed at the center of
the simulation system.

• W J : The frequency of the external current Jz,ext.

• I E X : Control parameter for electrostatic option. If I E X = 0, the electrostatic
component Ex is not solved. If I E X = 1, both electromagnetic and electro-
static components are solved. If I E X = 2, the electromagnetic components
are not solved. Instead of Maxwell’s equations, Poisson’s equation is solved
along with calculation of the charge density.

• N P L OT : Number of diagnostics to be made throughout the simulation run.
In the KEMPO1/MATLAB interface windows, we can specify four different
diagnostics to be made at a time interval of 
t × N T I M E/N P L OT . The
following diagnostics are available.

– 2D phase space plot of particles in (Vx , x), (Vy, x), or (Vz, x)

– 3D velocity space plot of particles in (Vx , Vy, Vz)
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– Plot of Ex (x), Ey(x), Ez(x), By(x), or Bz(x)

– 3D plots of transverse fields (Ey, Ez), (By, Bz), and perpendicular parti-
cle velocities (Vy, Vz) along the x-axis. The transverse scales for veloc-
ities, electric fields, and magnetic fields, are normalized by Vmax, Emax,
and Bmax, respectively.

– Wavenumber spectrum of Ex (k), Ey(k), Ez(k), By(k), or Bz(k)

– ω-k diagram of Ex , Ey , Ez , By , and Bz .

– Contour plot of Ex , Ey , Ez , By , and Bz .

– Energy history plot of kinetic, electric, and magnetic energy densities

– Distribution function of f (Vx ), f (Vy), or f (Vz) for electrons and ions.

In the panel of the diagnostics parameters, options of “P.Color” and “Param” can be
specified. “P.Color” makes particles plotted in color, and “Param” makes the param-
eters such as the speed of light, the initial drift velocity, the cyclotron frequency, the
plasma frequencies, and the initial velocity distributions plotted in the diagnostics.

It is noted that all physical parameters are determined with reference to the speed
of light c and a characteristic frequency ω of the simulation system such as the elec-
tron plasma frequency ωpe or the electron cyclotron frequency ωce. Once the values
of these quantities are given, we can choose the time step 
t so that it satisfies

ω
t << 2π. (62)

We normally set max(ωpe, ωce) ∼ 0.1 for accurate reproduction of the oscillation
with a reasonably short computation time.. In combination with 
t , the grid spacing

x should be determined so that the set of Maxwell’s equations can be integrated
stably in time.

6 Exercises
We study several examples of particle simulations using the KEMPO1/MATLAB

code. Thanks to the advanced capability of personal computers and efficiency of the
MATLAB software, we can perform various test runs that facilitate our understanding
of the basic processes in space plasmas such as wave instabilities [e.g., Gary, 1993]
and their nonlinear evolutions. In the following, we will go through basic tests of the
simulation code with emphasis on its numerical property.
6.1 Electrostatic thermal fluctuations

As we have seen in Eq. (47), thermal motion of electrons gives a fluctuation of
electrostatic field. We check the condition on the Debye length and the grid spacing
by varying the ratio λD/
x = V P A/(W P DX). We can find a distinct difference
between 0.5 and 0.2 after running the code with W P = 1, DT = 0.1, DX = 1,
N X = 128, N P = 128, and N T I M E = 4096. In both cases, the thermal energy
increases due to the electrostatic fluctuations. The rates of the energy increase are,
however, clearly different. The energy increase indicates that the fluctuation with the
smaller value of λD/
x is nonphysical, resulting in stochastic heating of particles.
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Although the code can be run with the electrostatic option I E X = 2, it may also be
run as the full electromagnetic option I E X = 1. The Courant condition (13) must
strictly be satisfied, i.e., CV < DX/DT = 10. As a test, one may try violation of
this condition. It is also useful to confirm that the ratio of the electrostatic energy
to the thermal energy is inversely proportional to N P/N X . To study coherent wave
phenomena in space plasmas by the particle code, we generally need a large number
of superparticles.
6.2 ω-k dispersion relations of plasma waves

We have prepared a spectrum analysis program that generates ω-k diagrams by
applying discrete Fourier transformations in space and time. The forward and back-
ward traveling waves are separated by positive and negative wavenumbers, respec-
tively. The technique is described in Matsumoto and Omura [1985]. We can repro-
duce the dispersion relations of various plasma waves by giving enough resolutions
in space and time. We need to give a sufficient number of superparticles to form
the Maxwellian velocity distribution functions within one wavelength of the wave
of interest. It is suggested to try the following parameters with the options for di-
agnostics “Ex(w,k)”,“Ey(w,k)”, “By(w,k)”, and “Energy” for panels 1, 2, 3, and 4,
respectively. The code must be executed as the full electromagnetic code with the
option I E X = 1. A set of interesting ω − k diagrams can be obtained with DX = 1
N X = 256, DT = 0.1, N T I M E = 1024, CV = 8, WC = −1, N S = 1, W P = 2,
N P = 1024 and N P L OT = 1024. We can reproduce a variety of plasma dis-
persion relations by varying the propagation angle AN GL E from 0 to 90 degrees.
In Fig. 3, we have plotted the results of a run for waves propagating parallel to the
static magnetic field. The upper right panel shows the ω-k diagram of the electrostatic
component Ex . The mode at the plasma frequency W P = 2 corresponds to Lang-
muir waves. The lower panels show the transverse electric field Ey and magnetic
field By . We can find R-mode and L-mode waves whose phase velocities approach
the speed of light, and a whistler mode wave below the electron cyclotron frequency
|WC | = 1. When we change the angle of the static magnetic field to 90 degrees as
shown in Fig. 4, the electrostatic mode Ex shows the dispersion relations of electro-
static cyclotron waves called Bernstein modes. These include the upper hybrid waves
that approach the upper hybrid resonance frequency

√
W P2 + WC2. The lower left

panel show the electric field Ey in the direction of the magnetic field, which are
called ordinary modes. The strong mode is an O-mode wave with its phase velocity
approaching the speed of light, while the weak emissions with much smaller group
velocities ∂ω/∂k are O-mode cyclotron waves. The lower right panel shows extraor-
dinary modes corresponding to those in the upper right panel. Execution of the code
with these parameters takes substantial CPU time with Pentium or Athlon processors.
We can monitor the execution by the energy history plot in the upper right panels of
Figs. 3 and 4, but the ω-k diagrams appear only after completion of the run. It is also
noted that dispersion relations of the light modes whose phase velocity approaches
the speed of light are distorted at the high wavenumber range close to the wavenumber
kmax = π/
X . This is due to the difference scheme as expressed by (11).
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Fig. 3. ω-k dispersion relations of plasma waves propagating parallel to the static magnetic field (Exercise
5.2 for AN GL E = 0).

6.3 Propagation of electromagnetic waves
We can radiate electromagnetic waves from an antenna in plasmas. We have pre-

pared an external current source at the center of the simulation system. The current
source is directed in the z-axis direction. A finite amplitude should be applied to
AJ AM P to turn on the current source. The current source is mathematically ex-
pressed by the Dirac delta-function δ as

Jz,ext = J0
x δ(x − X N x/2) sin(ωJ t). (63)

where J0 and ωJ are specified by AJ AM P and W J , respectively. The solution of
Maxwell’s equations with the current (63) in vacua can be obtained analytically, and
we can estimate the amplitude by

|Ez,max| = J0
x

2c
. (64)

In a plasma, however, the electrons and ions respond to the field excited by the ex-
ternal current, and various normal modes we have seen in the ω-k diagrams can be
excited depending on the frequency ωJ . In order to suppress the effect of the en-
hanced electrostatic fluctuation, we set Ex = 0 throughout the runs by specifying
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Fig. 4. ω-k dispersion relations of plasma waves propagating perpendicular to the static magnetic field
(Exercise 5.2 for AN GL E = 90).

I E X = 0. We use the following parameters: DX = 1, N X = 1024, DT = 0.04,
CV = 20, W P = 2, V P E = 0.01, V P A = 0.01, E M AX = 1, B M AX = 0.05,
V M AX = 1, and N T I M E = 1024. By comparing the response of an unmag-
netized plasma (WC = 0) and that of a magnetized plasma (WC = −1.0 and
AN GL E = 0), we can find different polarizations of the electromagnetic waves.
In the magnetized plasma, a whistler mode wave can be excited with W J = 0.5. In
the three-dimensional plot of the transverse components of the waves and particles as
functions of x , a diagnostics specified by “VyzEByz-X” shown in Fig. 5, we can find
a spiral structure of the whistler mode wave. In these runs with particles of a very
low temperature, the particles work as a fluid without any kinetic effects.

6.4 Two-stream instability and electron holes

We now introduce two different groups of electrons, while the ions are assumed
to be a neutralizing background as in the preceding test runs. The two groups of
electrons have different drift velocities in the direction parallel to the static magnetic
field. If the thermal velocities of the electrons are much smaller than the relative
drift velocity between the two groups of electrons, there arises a strong electrostatic
instability. Since the instability is purely electrostatic, the code can be run with the
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Fig. 5. Propagation of whistler mode wave from a thin current sheet embedded in a magnetized plasma.
Endpoints of vectors of the transverse magnetic fields (magenta) and electric fields (cyan) and perpen-
dicular velocities of particles (blue) are plotted from their origins on the x-axis.

electrostatic option I E X = 2 as well as the electromagnetic option I E X = 1. The
growth rate of the instability is large enough so that it can be demonstrated in spite
of large thermal fluctuations. The following parameters should be tried: DX = 1,
N X = 64, DT = 0.04, CV = 20, N S = 2, W P = 2, PC H = 0, V P E =
V P A = 1, V D1 = 0, V D2 = 10, V M AX = 20, and E M AX = 10. First we study
growth and saturation of the two-stream instability with N P1 = N P2 = 256 and
N T I M E = 256. We find that a coherent electrostatic potential grows to trap most of
the electrons. The electrons undergo nonlinear oscillation in the potentials forming
vortices. The instability is saturated because of the mixing of the two streams of
electrons. Second, we try a long run with N T I M E = 2048, keeping the same
number of particles N P1 = N P2 = 256. We find that the phase mixing continues
through the dissipation of the trapping potentials. Third, we increase the number
of particles in order to lower the thermal noise level by setting N P1 = N P2 =
4096, and run the code with N T I M E = 2048. We find formation of very stable
potential structures through coalescence of smaller potentials as shown in Fig. 6.
These potential structures are called electron holes as found in the velocity phase
space plot of the upper left panel, or electrostatic solitary waves (ESW) as observed
in the lower left panel. There have been many observations, simulations, and theories
on ESW [Matsumoto et al., 1994; Omura et al., 1994, 1996; Krasovsky et al., 2003].
6.5 Whistler mode instability driven by temperature anisotropy

In the presence of highly anisotropic electrons as in the Earth’s radiation belt,
whistler mode waves become unstable in the direction parallel to the static magnetic
field, diffusing the pitch angles of the energetic electrons through the cyclotron reso-
nance,

ω − kv‖ = ωce/γ (65)
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Fig. 6. Two-stream instability.

where ωce is the electron cyclotron frequency [Kennel and Petschek, 1966; Omura
and Summers, 2004]. If the parallel velocity v‖ of a high energy electron satisfies
(65), the electron sees the stationary transverse electric field, exchanging energy with
the transverse field. The parallel velocity v‖, however, is affected by the enhanced
thermal fluctuations of the parallel electrostatic fields that disturb an effective wave-
particle interaction through the cyclotron resonance. Instead of suppressing the ther-
mal fluctuation by assigning a large number of superparticles per grid, we can enforce
Ex = 0 by setting the option I E X = 0. Let us compare two runs with I E X = 0 and
I E X = 1. We assume two different species of electrons. One species is cold dense
electrons, and the other is hot tenuous electrons. The following parameters are sug-
gested: DX = 1, N X = 256, DT = 0.04, N T I M E = 4096, CV = 20, WC = −1,
AN GL E = 0, N S = 2, QM = −1, W P1 = 2, W P2 = 0.5, V P E1 = V P A1 = 1,
V P E2 = 20, V P A2 = 5, N P1 = N P2 = 4096. We can find growth of whistler
mode waves propagating both forward and backward along the magnetic field, i.e.,
the x axis, which we can confirm from the ω-k diagram of the transverse components
By and Bz . Comparison with the linear growth rate of the whistler mode instability is
found in Omura and Summers [2004].

6.6 Competing process of electrostatic instability and whistler mode instability

When an electron beam with a ring distribution in the perpendicular velocity is
drifting along the static magnetic field, both a longitudinal electrostatic field and
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Fig. 7. Competing process of electrostatic instability and whistler mode instability.

transverse electromagnetic field are excited owing to an electrostatic beam instability
and a whistler mode beam instability, respectively. The upper left panel of Fig. 7
shows time histories of the electric field energy, mostly consisting of that of the elec-
trostatic Ex field, and the magnetic field energy of whistler mode wave. By plotting
the ω-k diagram for Ex and Bz as in the lower panels of Fig. 7, we find that the di-
rections of propagation are different for the electrostatic wave and the whistler mode
wave. The following parameters are suggested: DX = 1, N X = 256, DT = 0.04,
N T I M E = 2048, CV = 20, WC = −1, AN GL E = 0, N S = 2, QM = −1,
W P1 = 2, W P2 = 0.5, V P E1 = V P A1 = V P E2 = V P A2 = 1, V D1 = 0,
V D = 20, PC H2 = 60. N P1 = N P2 = 4096. The diffusion process of the elec-
tron beam in the (Vx , Vy, Vz) phase space as shown in the upper right panel of Fig. 7
should be carefully examined.

It is also interesting to check the structure of the wave magnetic field, by specify-
ing the three-dimensional plot of vy,z , By,z , and Ey,z along the x axis.
6.7 Buneman instability

When there arises a large-scale parallel electric field with a very low frequency,
electrons are accelerated along the magnetic field forming a field-aligned current.
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Fig. 8. Buneman instability.

In the presence of a large relative drift velocity Vt‖ between the thermal electrons
and the thermal ions, a strong electrostatic instability called “Buneman instability”
arises. The following parameters are suggested: DX = 1, N X = 128, DT = 0.04,
N T I M E = 4096, CV = 20, WC = 0, AN GL E = 0, N S = 2, QM1 = −1
QM2 = 0.01, W P1 = 1, W P2 = 0.1, V P E1 = V P A1 = 1, V P E2 = V P A2 =
0.1, N P1 = N P2 = 2048. As we find in the two-stream instability, the electrons are
trapped by the growing electrostatic potential forming large electron holes or ESW,
which subsequently decay into ion acoustic waves. The upper panels of Fig. 8 show
the time history of the electrostatic field energy and electromagnetic field energy, and
a snapshot of the phase diagram in (v‖, x) space showing both electrons and ions. The
interaction is purely electrostatic, and we only have the Ex field component, which
is plotted in the lower left panel of Fig. 8 as a function of space x and time t . The
velocity distribution functions of electrons and ions are plotted as a snapshot at a
specific time.
6.8 Electromagnetic ion cyclotron instability driven by an ion beam

The low frequency part of the whistler mode wave at a long wavelength is called
an R-mode electromagnetic ion cyclotron wave (EMIC), which can be excited by an
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ion beam with a drift velocity satisfying the anomalous cyclotron resonance condition

ω − kv‖ = −i (66)

where i is the cyclotron frequency of ions [e.g., Thorne and Tsurutani, 1987; Ko-
jima et al., 1989]. The wave fields rotate around the static magnetic field in the
same direction as electrons, but with a positive parallel velocity a few times greater
than the Alfven velocity. The Doppler effect makes the beam ions see the wave
fields rotate in the same direction as their cyclotron motion. In accordance with the
anomalous cyclotron resonance condition, the ion beam can interact with the R-mode
wave, giving its drift energy to the electromagnetic wave. The following parame-
ters should be tried: DX = 1, N X = 1024, DT = 0.45, N T I M E = 4096,
CV = 20, WC = −2.5, AN GL E = 0, N S = 3, QM1 = −1, QM2 = 0.04,
QM3 = 0.04, W P1 = 10, W P2 = 1.789, W P3 = 0.8944, V P E1 = V P A1 = 2,
V P E2 = V P A2 = V P E3 = V P A3 = 0.4, V D1 = V D2 = 0, V D3 = 15,
N P1 = N P2 = N P3 = 524288, and I E X = 1. In the very initial stage, the
electrostatic Langmuir wave is excited by the ion beam, thermalizing the electrons in
the parallel direction. The electromagnetic instability slowly proceed, scattering the
beam ions in their pitch angles.
6.9 Electromagnetic ion cyclotron instability driven by temperature anisotropy of

ions
L-mode ion cyclotron waves are excited through the cyclotron instability driven

by energetic ions with temperature anisotropy (T⊥/T‖ > 1) [Gendrin et al., 1984],
just as R-mode whistler mode waves are excited by anisotropic energetic electrons. It
is noted that the instability excites both forward and backward traveling waves, which
result in a standing wave with an amplitude modulated in space. The modulation
results in a nonlinear Lorentz force in the direction of the static magnetic field [Omura
et al., 1988]. The L-mode dispersion relation will be split into two branches if there
exists another species of heavy ions because of the cyclotron resonance with the heavy
ions. The following parameters are suggested: DX = 1, N X = 1024, DT = 0.45,
N T I M E = 4096, CV = 20, WC = 20, AN GL E = 0, N S = 3, QM1 =
−1, QM2 = 0.04, QM3 = 0.04, W P1 = 10, W P2 = 1.732, W P3 = 1.0,
V P E1 = V P A1 = 2, V P E2 = V P A2 = 0.4, V P E3 = 4, , V P A3 = 0.4,
V D1 = V D2 = 0, V D3 = 15, N P1 = N P2 = N P3 = 524288, and I E X = 1.

7 Concluding Remarks
There are many other interesting physical problems that can be studied by the

KEMPO1/MATLAB code. I hope the code will be utilized for better understanding
of basic microphysics and nonlinear processes in space plasmas.
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